On the facets of the mixed-integer knapsack polyhedron

نویسنده

  • Alper Atamtürk
چکیده

We study the mixed–integer knapsack polyhedron, that is, the convex hull of the mixed–integer set defined by an arbitrary linear inequality and the bounds on the variables. We describe facet–defining inequalities of this polyhedron that can be obtained through sequential lifting of inequalities containing a single integer variable. These inequalities strengthen and/or generalize known inequalities for several special cases. We report computational results on using the inequalities as cutting planes for mixed–integer programming. March 2002, December 2002

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Generalization of the Master Cyclic Group Polyhedron

Sanjeeb Dash IBM Research Ricardo Fukasawa Georgia Inst. Tech. Oktay G unl uk IBM Research March 6, 2008 Abstract We study the Master Equality Polyhedron (MEP) which generalizes the Master Cyclic Group Polyhedron and the Master Knapsack Polyhedron. We present an explicit characterization of the polar of the nontrivial facet-de ning inequalities for MEP. This result generalizes similar results...

متن کامل

On n-step MIR and partition inequalities for integer knapsack and single-node capacitated flow sets

Pochet and Wolsey [Y. Pochet, L.A. Wolsey, Integer knapsack and flow covers with divisible coefficients: polyhedra, optimization and separation. Discrete Applied Mathematics 59(1995) 57–74] introduced partition inequalities for three substructures arising in various mixed integer programs, namely the integer knapsack set with nonnegative divisible/arbitrary coefficients and two forms of single-...

متن کامل

N-step Mingling Inequalities: New Facets for the Mixed-integer Knapsack Set

The n-step mixed integer rounding (MIR) inequalities of Kianfar and Fathi (Math Program 120(2):313–346, 2009) are valid inequalities for the mixedinteger knapsack set that are derived by using periodic n-step MIR functions and define facets for group problems. The mingling and 2-step mingling inequalities of Atamtürk and Günlük (Math Program 123(2):315–338, 2010) are also derived based on MIR a...

متن کامل

Cyclic group and knapsack facets

Any integer program may be relaxed to a group problem. We define the master cyclic group problem and several master knapsack problems, show the relationship between the problems, and give several classes of facet-defining inequalities for each problem, as well as a set of mappings that take facets from one type of master polyhedra to another.

متن کامل

Cover and Pack Inequalities for (Mixed) Integer Programming

We review strong inequalities for fundamental knapsack relaxations of (mixed) integer programs. These relaxations are the 0–1 knapsack set, the mixed 0–1 knapsack set, the integer knapsack set, and the mixed integer knapsack set. Our aim is to give a common presentation of the inequalities based on covers and packs and highlight the connections among them. The focus of the paper is on recent re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 98  شماره 

صفحات  -

تاریخ انتشار 2003